可以转动的立体图形
圆柱体是由两个大小相等且相互平行的圆(底面)和连接两个底面的曲面(侧面)围成的几何体。
圆锥又称圆锥体,是一种立体几何。它是由一个平面上的圆和一个平面包围的物体,该平面由它的所有切线和该平面外的一个固定点定义。圆称为圆锥体的底部,平面外的固定点称为圆锥体的顶点或尖端,顶点到底部所在平面的距离称为圆锥体的高度。通常用“圆锥”一词来指正圆锥,即圆锥的顶点在底部的投影为圆心时。圆锥可以定义为直角三角形绕其一条右边旋转一周所得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面上的投影不在圆心上,这样的圆锥叫做斜圆锥。正圆锥可以由平面截锥得到,而斜圆锥则不能。斜截一个圆锥面所得到的几何形状叫做椭圆锥。
与圆柱圆锥的区别和联系如下:
(1)圆柱体有两个底面,圆锥体只有一个底面;
(2)圆柱体的两个底面是两个完全相等的圆,圆锥体的底面是一个圆;
(3)圆柱体两底面之间的距离称为圆柱体的高度。圆柱体的两个底面之间可以做无数个高度;从圆锥体的顶点到底部的距离称为圆锥体的高度。圆锥体只有一个高;
(4)圆柱体的侧面展开图为矩形或平行四边形;圆锥体的侧面展开呈扇形;
(5)等高的圆锥体和圆柱体,圆锥体的体积是圆柱体体积的三分之一;体积和高度相同的圆锥体和圆柱体,圆锥体的底面积是圆柱体的三倍;体积和底面积相同的圆锥体和圆柱体,圆锥体的高度是圆柱体的三倍。
立体图形
立体图形是各部分不在同一平面上的几何图形。它是由一个或多个曲面包围的三维图形,可以存在于现实生活中。
点变成线,线变成面,面变成物体。也就是说,当你看一个长方体或正方体等规则的立体图形时,你最多只能看到立体图形的三个面。
三维图形是对现实物体认知中的一种抽象,即在只考虑其形状和大小而忽略其他因素的基础上,对现实物体在平面上的表现。